3.300 \(\int \frac {x^{3/2}}{\sqrt {a x^2+b x^5}} \, dx\)

Optimal. Leaf size=36 \[ \frac {2 \tanh ^{-1}\left (\frac {\sqrt {b} x^{5/2}}{\sqrt {a x^2+b x^5}}\right )}{3 \sqrt {b}} \]

[Out]

2/3*arctanh(x^(5/2)*b^(1/2)/(b*x^5+a*x^2)^(1/2))/b^(1/2)

________________________________________________________________________________________

Rubi [A]  time = 0.05, antiderivative size = 36, normalized size of antiderivative = 1.00, number of steps used = 2, number of rules used = 2, integrand size = 21, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.095, Rules used = {2029, 206} \[ \frac {2 \tanh ^{-1}\left (\frac {\sqrt {b} x^{5/2}}{\sqrt {a x^2+b x^5}}\right )}{3 \sqrt {b}} \]

Antiderivative was successfully verified.

[In]

Int[x^(3/2)/Sqrt[a*x^2 + b*x^5],x]

[Out]

(2*ArcTanh[(Sqrt[b]*x^(5/2))/Sqrt[a*x^2 + b*x^5]])/(3*Sqrt[b])

Rule 206

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTanh[(Rt[-b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[-b, 2]), x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 2029

Int[(x_)^(m_.)/Sqrt[(a_.)*(x_)^(j_.) + (b_.)*(x_)^(n_.)], x_Symbol] :> Dist[-2/(n - j), Subst[Int[1/(1 - a*x^2
), x], x, x^(j/2)/Sqrt[a*x^j + b*x^n]], x] /; FreeQ[{a, b, j, n}, x] && EqQ[m, j/2 - 1] && NeQ[n, j]

Rubi steps

\begin {align*} \int \frac {x^{3/2}}{\sqrt {a x^2+b x^5}} \, dx &=\frac {2}{3} \operatorname {Subst}\left (\int \frac {1}{1-b x^2} \, dx,x,\frac {x^{5/2}}{\sqrt {a x^2+b x^5}}\right )\\ &=\frac {2 \tanh ^{-1}\left (\frac {\sqrt {b} x^{5/2}}{\sqrt {a x^2+b x^5}}\right )}{3 \sqrt {b}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.02, size = 59, normalized size = 1.64 \[ \frac {2 x \sqrt {a+b x^3} \tanh ^{-1}\left (\frac {\sqrt {b} x^{3/2}}{\sqrt {a+b x^3}}\right )}{3 \sqrt {b} \sqrt {x^2 \left (a+b x^3\right )}} \]

Antiderivative was successfully verified.

[In]

Integrate[x^(3/2)/Sqrt[a*x^2 + b*x^5],x]

[Out]

(2*x*Sqrt[a + b*x^3]*ArcTanh[(Sqrt[b]*x^(3/2))/Sqrt[a + b*x^3]])/(3*Sqrt[b]*Sqrt[x^2*(a + b*x^3)])

________________________________________________________________________________________

fricas [A]  time = 0.54, size = 101, normalized size = 2.81 \[ \left [\frac {\log \left (-8 \, b^{2} x^{6} - 8 \, a b x^{3} - 4 \, \sqrt {b x^{5} + a x^{2}} {\left (2 \, b x^{3} + a\right )} \sqrt {b} \sqrt {x} - a^{2}\right )}{6 \, \sqrt {b}}, -\frac {\sqrt {-b} \arctan \left (\frac {2 \, \sqrt {b x^{5} + a x^{2}} \sqrt {-b} \sqrt {x}}{2 \, b x^{3} + a}\right )}{3 \, b}\right ] \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^(3/2)/(b*x^5+a*x^2)^(1/2),x, algorithm="fricas")

[Out]

[1/6*log(-8*b^2*x^6 - 8*a*b*x^3 - 4*sqrt(b*x^5 + a*x^2)*(2*b*x^3 + a)*sqrt(b)*sqrt(x) - a^2)/sqrt(b), -1/3*sqr
t(-b)*arctan(2*sqrt(b*x^5 + a*x^2)*sqrt(-b)*sqrt(x)/(2*b*x^3 + a))/b]

________________________________________________________________________________________

giac [A]  time = 0.20, size = 41, normalized size = 1.14 \[ -\frac {2 \, \arctan \left (\frac {\sqrt {b + \frac {a}{x^{3}}}}{\sqrt {-b}}\right )}{3 \, \sqrt {-b}} + \frac {2 \, \arctan \left (\frac {\sqrt {b}}{\sqrt {-b}}\right )}{3 \, \sqrt {-b}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^(3/2)/(b*x^5+a*x^2)^(1/2),x, algorithm="giac")

[Out]

-2/3*arctan(sqrt(b + a/x^3)/sqrt(-b))/sqrt(-b) + 2/3*arctan(sqrt(b)/sqrt(-b))/sqrt(-b)

________________________________________________________________________________________

maple [C]  time = 1.24, size = 480, normalized size = 13.33 \[ -\frac {4 \left (b \,x^{3}+a \right ) \left (i \sqrt {3}-1\right ) \sqrt {-\frac {\left (i \sqrt {3}-3\right ) b x}{\left (i \sqrt {3}-1\right ) \left (-b x +\left (-a \,b^{2}\right )^{\frac {1}{3}}\right )}}\, \left (-b x +\left (-a \,b^{2}\right )^{\frac {1}{3}}\right )^{2} \sqrt {\frac {2 b x +i \sqrt {3}\, \left (-a \,b^{2}\right )^{\frac {1}{3}}+\left (-a \,b^{2}\right )^{\frac {1}{3}}}{\left (1+i \sqrt {3}\right ) \left (-b x +\left (-a \,b^{2}\right )^{\frac {1}{3}}\right )}}\, \sqrt {\frac {-2 b x +i \sqrt {3}\, \left (-a \,b^{2}\right )^{\frac {1}{3}}-\left (-a \,b^{2}\right )^{\frac {1}{3}}}{\left (i \sqrt {3}-1\right ) \left (-b x +\left (-a \,b^{2}\right )^{\frac {1}{3}}\right )}}\, \left (\EllipticF \left (\sqrt {-\frac {\left (i \sqrt {3}-3\right ) b x}{\left (i \sqrt {3}-1\right ) \left (-b x +\left (-a \,b^{2}\right )^{\frac {1}{3}}\right )}}, \sqrt {\frac {\left (i \sqrt {3}+3\right ) \left (i \sqrt {3}-1\right )}{\left (1+i \sqrt {3}\right ) \left (i \sqrt {3}-3\right )}}\right )-\EllipticPi \left (\sqrt {-\frac {\left (i \sqrt {3}-3\right ) b x}{\left (i \sqrt {3}-1\right ) \left (-b x +\left (-a \,b^{2}\right )^{\frac {1}{3}}\right )}}, \frac {i \sqrt {3}-1}{i \sqrt {3}-3}, \sqrt {\frac {\left (i \sqrt {3}+3\right ) \left (i \sqrt {3}-1\right )}{\left (1+i \sqrt {3}\right ) \left (i \sqrt {3}-3\right )}}\right )\right ) x^{\frac {3}{2}}}{\sqrt {b \,x^{5}+a \,x^{2}}\, \sqrt {\left (b \,x^{3}+a \right ) x}\, \left (i \sqrt {3}-3\right ) \sqrt {\frac {\left (-b x +\left (-a \,b^{2}\right )^{\frac {1}{3}}\right ) \left (2 b x +i \sqrt {3}\, \left (-a \,b^{2}\right )^{\frac {1}{3}}+\left (-a \,b^{2}\right )^{\frac {1}{3}}\right ) \left (-2 b x +i \sqrt {3}\, \left (-a \,b^{2}\right )^{\frac {1}{3}}-\left (-a \,b^{2}\right )^{\frac {1}{3}}\right ) x}{b^{2}}}\, b^{2}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x^(3/2)/(b*x^5+a*x^2)^(1/2),x)

[Out]

-4*x^(3/2)*(b*x^3+a)*(I*3^(1/2)-1)*(-(I*3^(1/2)-3)/(I*3^(1/2)-1)/(-b*x+(-a*b^2)^(1/3))*b*x)^(1/2)*(-b*x+(-a*b^
2)^(1/3))^2*((2*b*x+I*3^(1/2)*(-a*b^2)^(1/3)+(-a*b^2)^(1/3))/(1+I*3^(1/2))/(-b*x+(-a*b^2)^(1/3)))^(1/2)*((-2*b
*x+I*3^(1/2)*(-a*b^2)^(1/3)-(-a*b^2)^(1/3))/(I*3^(1/2)-1)/(-b*x+(-a*b^2)^(1/3)))^(1/2)*(EllipticF((-(I*3^(1/2)
-3)/(I*3^(1/2)-1)/(-b*x+(-a*b^2)^(1/3))*b*x)^(1/2),((I*3^(1/2)+3)*(I*3^(1/2)-1)/(1+I*3^(1/2))/(I*3^(1/2)-3))^(
1/2))-EllipticPi((-(I*3^(1/2)-3)/(I*3^(1/2)-1)/(-b*x+(-a*b^2)^(1/3))*b*x)^(1/2),(I*3^(1/2)-1)/(I*3^(1/2)-3),((
I*3^(1/2)+3)*(I*3^(1/2)-1)/(1+I*3^(1/2))/(I*3^(1/2)-3))^(1/2)))/(b*x^5+a*x^2)^(1/2)/b^2/((b*x^3+a)*x)^(1/2)/(I
*3^(1/2)-3)/((-b*x+(-a*b^2)^(1/3))*(2*b*x+I*3^(1/2)*(-a*b^2)^(1/3)+(-a*b^2)^(1/3))*(-2*b*x+I*3^(1/2)*(-a*b^2)^
(1/3)-(-a*b^2)^(1/3))/b^2*x)^(1/2)

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {x^{\frac {3}{2}}}{\sqrt {b x^{5} + a x^{2}}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^(3/2)/(b*x^5+a*x^2)^(1/2),x, algorithm="maxima")

[Out]

integrate(x^(3/2)/sqrt(b*x^5 + a*x^2), x)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.03 \[ \int \frac {x^{3/2}}{\sqrt {b\,x^5+a\,x^2}} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x^(3/2)/(a*x^2 + b*x^5)^(1/2),x)

[Out]

int(x^(3/2)/(a*x^2 + b*x^5)^(1/2), x)

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {x^{\frac {3}{2}}}{\sqrt {x^{2} \left (a + b x^{3}\right )}}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x**(3/2)/(b*x**5+a*x**2)**(1/2),x)

[Out]

Integral(x**(3/2)/sqrt(x**2*(a + b*x**3)), x)

________________________________________________________________________________________